Visual Attention Based Salient Object Motion Detection in Spatio Temporal Volume

ثبت نشده
چکیده

260 Abstract—We present different visual attention based salient object detection methods for effectively detecting object in structured environment. Human brains pay more attention towards some important part of image sequences. Those attentions are extraordinary fast and realistic one. Computation of such salient object detection like intelligence behavior is very difficult task for implementation. We plan to explore the area of computer vision to create a study of salient object detection models based on visual attention. The problems of visual attention based salient object detections are mainly studied by researchers include neural system, physiology; computer vision etc has received much attention over the past few years. There are wide ranges of applications in salient object detections like traffic rule violation detection, object tracking and security surveillances, human action prediction recognition etc. Recent studies demonstrated that it can also be applied in robotic navigation as well in different perspective and object detection in multi dimensional space together with cues for human activity recognition and event understanding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Saliency Perception via Hypercomplex Frequency Spectral Contrast

Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc paramete...

متن کامل

Perception-oriented video saliency detection via spatio-temporal attention analysis

Human visual system actively seeks salient regions and movements in video sequences to reduce the search effort. Computational visual saliency detection model provides important information for semantic understanding in many real world applications. In this paper, we propose a novel perception-oriented video saliency detection model to detect the attended regions for both interesting objects an...

متن کامل

Finding spatio-temporal salient paths for video objects discovery

Many videos capture and follow salient objects in a scene. Detecting such salient objects is thus of great interests to video analytics and search. However, the discovery of salient objects in an unsupervised way is a challenging problem as there is no prior knowledge of the salient objects provided. Different from existing salient object detection methods, we propose to detect and track salien...

متن کامل

Salient Region Detection in Video Using Spatiotemporal Visual Attention Model

Abstract Salient region detection is very useful in video analysis. A salient region detection method based on spatiotemporal visual attention model is proposed in this paper. Visual attention mechanism is used to generate saliency map of the image sequence. Spatial saliency map is computed in accordance with some predefined features including intensity, color and orientation. Temporal visual s...

متن کامل

Salient Object Detection in Videos Based on SPATIO-Temporal Saliency Maps and Colour Features

Salient object detection in videos is challenging because of the competing motion in the background, resulting from camera tracking an object of interest, or motion of objects in the foreground. The authors present a fast method to detect salient video objects using particle filters, which are guided by spatiotemporal saliency maps and color feature with the ability to quickly recover from fals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014